Quantum $K$-theoretic divisor axiom for flag manifolds
Quantum $K$-theoretic divisor axiom for flag manifolds
We prove an identity for (torus-equivariant) 3-point, genus 0, $K$-theoretic Gromov-Witten invariants of full or partial flag manifolds, which can be thought of as a replacement for the ``divisor axiom'' for the (torus-equivariant) quantum $K$-theory of flag manifolds. This identity enables us to compute the (torus-equivariant) 3-point, genus 0, $K$-theoretic Gromov-Witten invariants defined by two Schubert classes and a divisor Schubert class in the (torus-equivariant) ordinary $K$-theory ring of flag manifolds. We prove this identity by making use of the Chevalley formula for the (torus-equivariant) quantum $K$-theory ring of flag manifolds, which is described in terms of the quantum Bruhat graph.
Cristian Lenart、Satoshi Naito、Daisuke Sagaki、Weihong Xu with an Appendix by Leonardo C. Mihalcea、Weihong Xu
数学
Cristian Lenart,Satoshi Naito,Daisuke Sagaki,Weihong Xu with an Appendix by Leonardo C. Mihalcea,Weihong Xu.Quantum $K$-theoretic divisor axiom for flag manifolds[EB/OL].(2025-05-21)[2025-07-09].https://arxiv.org/abs/2505.16150.点此复制
评论