|国家预印本平台
首页|On forest and bipartite cuts in sparse graphs

On forest and bipartite cuts in sparse graphs

On forest and bipartite cuts in sparse graphs

来源:Arxiv_logoArxiv
英文摘要

The paper is devoted to sufficient conditions for the existence of vertex cuts in simple graphs, where the induced subgraph on the cut vertices belongs to a specified graph class. In particular, we show that any connected graph with $n$ vertices and fewer than $(19n - 28)/8$ edges admits a forest cut. This result improves upon recent bounds, although it does not resolve the conjecture that the sharp threshold is $3n - 6$ (Chernyshev, Rauch, Rautenbach, 2024). Furthermore, we prove that if the number of edges is less than $(80n-134)/31$, then the graph admits a bipartite cut.

Ilya I. Bogdanov、Elizaveta Neustroeva、Georgy Sokolov、Alexei Volostnov、Nikolay Russkin、Vsevolod Voronov

数学

Ilya I. Bogdanov,Elizaveta Neustroeva,Georgy Sokolov,Alexei Volostnov,Nikolay Russkin,Vsevolod Voronov.On forest and bipartite cuts in sparse graphs[EB/OL].(2025-05-21)[2025-06-27].https://arxiv.org/abs/2505.16179.点此复制

评论