|国家预印本平台
首页|基于时序最大编码率约简的人体动作分割

基于时序最大编码率约简的人体动作分割

中文摘要英文摘要

人体运动分割(Human Motion Segmentation: HMS)是一种依据视频呈现的不同人体运动对视频序列进行无监督划分的任务。作为人体运动识别和分析的预处理过程,该任务具有很强的研究意义与应用价值。最近,基于自表达模型的子空间聚类算法在该任务上有出色的性能表现,这类算法的基本假设是高维时序数据服从多个子空间的并集(Union-of-Subspaces: UoS)分布,而自表达模型被证明可以在较宽松条件下将数据正确划分到其所属的子空间中。然而,实际场景下的时序数据分布往往更加复杂,针对高维时序数据的UoS假设不一定会成立,因此限制了现有方法的性能表现。对此,本文提出了一种时序编码率约简聚类(Temporal Rate Reduction Clustering: $\text{TR}^2\text{C}$)框架,以同时进行有结构的表征学习和人体运动划分。具体而言,$\text{TR}^2\text{C}$通过引入最大化编码率约简准则以确保学习到的表征服从UoS分布,并且通过引入拉普拉斯时序正则来确保表征具有时序一致性。为了验证算法的有效性,本文在五个常见的人体运动分割数据集上进行实验,均取得了出色的性能表现。

Human Motion Segmentation (HMS) is an unsupervised learning task, aiming to partition videos into non-overlapping segments capturing different human motions.As an early processing step of human motion recognition and analysis, HMS is of great research importance and practical applicability.Recently, the self-expressive model based subspace clustering algorithms have emerged as dominant approaches in the HMS field.These models are based on the assumption that high-dimensional temporal data aligns with a Union-of-Subspaces (UoS) distribution andself-expressive models are proved to yield correct subspace clustering results under mild conditions.However, real-world temporal data may not align well with the UoS distribution, which hinders the model from achieving better performance.In this paper, we propose a novel HMS framework, named Temporal Rate Reduction Clustering (\trc{}), which is able to learn structured representations and segmentation result simultaneously.Specifically, \trc{} learns representations that align with a UoS distribution by incorporating the maximal coding rate reduction principle and ensures temporal consistency of representations by introducing the temporal Laplacian regularization.We conduct experiments and achieve state-of-the-art performances on four commonly used datasets of HMS, which validates the effectiveness of our framework.

童政钰、孟祥涵、李春光

北京邮电大学 人工智能学院,北京 100876 北京邮电大学 人工智能学院,北京 100876 北京邮电大学 人工智能学院,北京 100876

计算技术、计算机技术

人工智能时间序列聚类人体运动分割

artificial intelligencetemporal clusteringhuman motion segmentation

童政钰,孟祥涵,李春光.基于时序最大编码率约简的人体动作分割[EB/OL].(2025-05-26)[2025-05-28].http://www.paper.edu.cn/releasepaper/content/202505-146.点此复制

评论