Critical Exponent Rigidity for $\Theta-$positive Representations
Critical Exponent Rigidity for $\Theta-$positive Representations
We prove for a $\Theta-$positive representation from a discrete subgroup $\Gamma\subset \mathsf{PSL}(2,\mathbb{R})$, the critical exponent for any $\alpha\in \Theta$ is not greater than one. When $\Gamma$ is geometrically finite, the equality holds if and only if $\Gamma$ is a lattice.
Zhufeng Yao
数学
Zhufeng Yao.Critical Exponent Rigidity for $\Theta-$positive Representations[EB/OL].(2025-05-23)[2025-06-05].https://arxiv.org/abs/2505.17559.点此复制
评论