|国家预印本平台
首页|Quantization of infinitesimal braidings and pre-Cartier quasi-bialgebras

Quantization of infinitesimal braidings and pre-Cartier quasi-bialgebras

Quantization of infinitesimal braidings and pre-Cartier quasi-bialgebras

来源:Arxiv_logoArxiv
英文摘要

In this paper we extend Cartier's deformation theorem of braided monoidal categories admitting an infinitesimal braiding to the non-symmetric case. The algebraic counterpart of these categories is the notion of a pre-Cartier quasi-bialgebra, which extends the well-known notion of quasitriangular quasi-bialgebra given by Drinfeld. Our result implies that one can quantize the infinitesimal $\mathcal{R}$-matrix of any Cartier quasi-bialgebra. We further discuss the emerging concepts of infinitesimal quantum Yang-Baxter equation and Cartier ring, the latter containing braid groups with additional generators that correspond to infinitesimal braidings. Explicit deformations of the representation categories of the gauge deformed quasitriangular quasi-bialgebras $E(n)$ are provided.

Chiara Esposito、Andrea Rivezzi、Jonas Schnitzer、Thomas Weber

数学

Chiara Esposito,Andrea Rivezzi,Jonas Schnitzer,Thomas Weber.Quantization of infinitesimal braidings and pre-Cartier quasi-bialgebras[EB/OL].(2025-05-23)[2025-06-08].https://arxiv.org/abs/2505.17729.点此复制

评论