|国家预印本平台
首页|Refining twisted bimodules associated to VOAs

Refining twisted bimodules associated to VOAs

Refining twisted bimodules associated to VOAs

来源:Arxiv_logoArxiv
英文摘要

Let $V$ be a vertex operator algebra and $g$ an automorphism of $V$ of finite order $T$. For any $m, n \in(1/T) \mathbb N$, an $A_{g,n}(V)\!-\!A_{g,m}(V)$ bimodule $A_{g,n, m}(V)=V/O_{g,n,m}(V)$ was defined by Dong and Jiang, where $O_{g,n,m}(V)$ is the sum of three certain subspaces $O_{g,n, m}^{\prime}(V), O_{g,n, m}^{\prime \prime}(V)$ and $O_{g,n, m}^{\prime \prime \prime}(V)$. In this paper, we show that $O_{g,n, m}(V)=O_{g,n, m}^{\prime}(V)$.

Shun Xu、Jianzhi Han

数学物理学

Shun Xu,Jianzhi Han.Refining twisted bimodules associated to VOAs[EB/OL].(2025-05-25)[2025-06-12].https://arxiv.org/abs/2505.19162.点此复制

评论