Resolvability in products and squares
Resolvability in products and squares
Suppose $X$ and $Y$ are topological spaces, $|X| = \Delta(X)$ and $|Y| = \Delta(Y)$. We investigate resolvability of the product $X \times Y$. We prove that: I. If $|X| = |Y| = \omega$ and $X,Y$ are Hausdorff, then $X \times Y$ is maximally resolvable; II. If $2^\kappa = \kappa^+$, $\{|X|, \mathrm{cf}|X|\} \cap \{\kappa, \kappa^+\} \ne \emptyset$ and $\mathrm{cf}|Y| = \kappa^+$, then the space $X \times Y$ is $\kappa^+$-resolvable. In particular, under GCH the space $X^2$ is $\mathrm{cf}|X|$-resolvable whenever $\mathrm{cf}|X|$ is an isolated cardinal; III. ($\frak{r} = \frak{c}$) If $\mathrm{cf}|X| = \omega$ and $\mathrm{cf}|Y| = \mathrm{cf}(\frak{c})$, then the space $X \times Y$ is $\omega$-resolvable. If, moreover, $\mathrm{cf}(\frak{c}) = \omega_1$, then the space $X \times Y$ is $\omega_1$-resolvable.
Anton Lipin
数学
Anton Lipin.Resolvability in products and squares[EB/OL].(2025-05-24)[2025-06-18].https://arxiv.org/abs/2505.18704.点此复制
评论