DoctorRAG: Medical RAG Fusing Knowledge with Patient Analogy through Textual Gradients
DoctorRAG: Medical RAG Fusing Knowledge with Patient Analogy through Textual Gradients
Existing medical RAG systems mainly leverage knowledge from medical knowledge bases, neglecting the crucial role of experiential knowledge derived from similar patient cases -- a key component of human clinical reasoning. To bridge this gap, we propose DoctorRAG, a RAG framework that emulates doctor-like reasoning by integrating both explicit clinical knowledge and implicit case-based experience. DoctorRAG enhances retrieval precision by first allocating conceptual tags for queries and knowledge sources, together with a hybrid retrieval mechanism from both relevant knowledge and patient. In addition, a Med-TextGrad module using multi-agent textual gradients is integrated to ensure that the final output adheres to the retrieved knowledge and patient query. Comprehensive experiments on multilingual, multitask datasets demonstrate that DoctorRAG significantly outperforms strong baseline RAG models and gains improvements from iterative refinements. Our approach generates more accurate, relevant, and comprehensive responses, taking a step towards more doctor-like medical reasoning systems.
Yuxing Lu、Gecheng Fu、Wei Wu、Xukai Zhao、Sin Yee Goi、Jinzhuo Wang
医学研究方法
Yuxing Lu,Gecheng Fu,Wei Wu,Xukai Zhao,Sin Yee Goi,Jinzhuo Wang.DoctorRAG: Medical RAG Fusing Knowledge with Patient Analogy through Textual Gradients[EB/OL].(2025-05-26)[2025-07-01].https://arxiv.org/abs/2505.19538.点此复制
评论