Uniqueness of asymptotically cylindrical steady gradient Ricci solitons
Uniqueness of asymptotically cylindrical steady gradient Ricci solitons
We show that the Bryant soliton is the unique asymptotically cylindrical steady gradient Ricci soliton, in any dimension $n \geq 3$ and without any curvature assumptions. This generalizes a celebrated theorem of Brendle. We also prove that any steady gradient Ricci soliton asymptotic to a cylinder over the homogeneous lens space $\mathbb{S}^{2m+1}/\mathbb{Z}_k = L_{m,k}$, for $m \geq 1$ and $k \geq 3$, is a noncollapsed Appleton soliton on the complex line bundle $O(-k)$ over $\mathbb{CP}^m$. In dimension 4, our results lead to a classification of steady gradient Ricci soliton singularity models on smooth manifolds which possess a tangent flow at infinity of the form $(SU(2)/\Gamma) \times \mathbb{R}$.
Michael B. Law
数学
Michael B. Law.Uniqueness of asymptotically cylindrical steady gradient Ricci solitons[EB/OL].(2025-05-26)[2025-06-25].https://arxiv.org/abs/2505.20576.点此复制
评论