|国家预印本平台
首页|A Framework for Adversarial Analysis of Decision Support Systems Prior to Deployment

A Framework for Adversarial Analysis of Decision Support Systems Prior to Deployment

A Framework for Adversarial Analysis of Decision Support Systems Prior to Deployment

来源:Arxiv_logoArxiv
英文摘要

This paper introduces a comprehensive framework designed to analyze and secure decision-support systems trained with Deep Reinforcement Learning (DRL), prior to deployment, by providing insights into learned behavior patterns and vulnerabilities discovered through simulation. The introduced framework aids in the development of precisely timed and targeted observation perturbations, enabling researchers to assess adversarial attack outcomes within a strategic decision-making context. We validate our framework, visualize agent behavior, and evaluate adversarial outcomes within the context of a custom-built strategic game, CyberStrike. Utilizing the proposed framework, we introduce a method for systematically discovering and ranking the impact of attacks on various observation indices and time-steps, and we conduct experiments to evaluate the transferability of adversarial attacks across agent architectures and DRL training algorithms. The findings underscore the critical need for robust adversarial defense mechanisms to protect decision-making policies in high-stakes environments.

Brett Bissey、Kyle Gatesman、Walker Dimon、Mohammad Alam、Luis Robaina、Joseph Weissman

计算技术、计算机技术

Brett Bissey,Kyle Gatesman,Walker Dimon,Mohammad Alam,Luis Robaina,Joseph Weissman.A Framework for Adversarial Analysis of Decision Support Systems Prior to Deployment[EB/OL].(2025-05-27)[2025-06-27].https://arxiv.org/abs/2505.21414.点此复制

评论