YOLOv3在FPGA开发板上的部署
本文针对YOLOv3目标检测算法在FPGA硬件上的部署展开研究,选用AXU2CGB-E开发板(搭载赛灵思Zynq UltraScale+ MPSoC芯片),利用Vitis AI工具链实现YOLOv3模型的加速推理,并通过USB摄像头获取实时视频流进行目标检测。本文首先简要介绍YOLOv3算法原理和模型结构;随后阐述了在实验开始前我们所做的相关工作;然后,本文设计并实现了基于AXU2CGB-E开发板的系统部署方案,包括模型量化、编译及Python推理脚本;最后通过实验展示了部署效果,包括检测结果图、帧率性能。实验结果表明,利用FPGA加速器可有效实现YOLOv3的实时目标检测功能。
his article studies the deployment of the YOLOv3 object detection algorithm on FPGA hardware, using the AXU2CGB-E development board (equipped with Xilinx Zynq UltraScale+ MPSoC chip). The Vitis AI toolchain is utilized to achieve accelerated inference for the YOLOv3 model, and real-time video streams are obtained through a USB camera for object detection. The article first briefly introduces the principles and model structure of the YOLOv3 algorithm; then it explains the relevant work we did before starting the experiments; next, it designs and implements a system deployment scheme based on the AXU2CGB-E development board, including model quantization, compilation, and Python inference scripts; finally, the deployment effects are demonstrated through experiments, including detection results images and frame rate performance. Experimental results show that using FPGA accelerators can effectively achieve real-time object detection capabilities with YOLOv3.
张临格、王浩、王振武、贺望龙、滕媛
中国矿业大学(北京)人工智能学院,北京 100080中国矿业大学(北京)人工智能学院,北京 100080中国矿业大学(北京)人工智能学院,北京 100080中国矿业大学(北京)人工智能学院,北京 100080中国矿业大学(北京)人工智能学院,北京 100080
计算技术、计算机技术
计算机应用技术目标检测YOLOv3FPGAVitis AI
omputer application technologytarget detectionYOLOv3FPGAVitis AI
张临格,王浩,王振武,贺望龙,滕媛.YOLOv3在FPGA开发板上的部署[EB/OL].(2025-05-29)[2025-06-01].http://www.paper.edu.cn/releasepaper/content/202505-165.点此复制
评论