On face angles of tetrahedra with a given base
On face angles of tetrahedra with a given base
Let us consider the set $\Omega (\triangle ABC)$ of all tetrahedra $ABCD$ with a given non-degenerate base $ABC$ in $\mathbb{E}^3$ and $D$ lying outside the plane $ABC$. Let us denote by $\Sigma(\triangle ABC)$ the set $\left\{\Bigl(\cos \overline{\alpha},\cos \overline{\beta},\cos \overline{\gamma} \Bigr)\in \mathbb{R}^3\,|\, ABCD \in \Omega (\triangle ABC)\right\}$, where $\overline{\alpha}=\angle BDC$, $\overline{\beta}=\angle ADC$, and $\overline{\gamma}=\angle ADB$. The paper is devoted to the problem of determining of the closure of $\Sigma(\triangle ABC)$ in $\mathbb{R}^3$ and its boundary.
E. V. Nikitenko、Yu. G. Nikonorov
数学
E. V. Nikitenko,Yu. G. Nikonorov.On face angles of tetrahedra with a given base[EB/OL].(2025-05-28)[2025-06-14].https://arxiv.org/abs/2505.22374.点此复制
评论