基于机器学习算法构建黑色素瘤免疫治疗预后预测模型
目的:本研究旨在通过生物信息学技术,开发黑色素瘤预后预测模型(MMPS),整合基因表达谱与临床特征参数,实现动态预后分层,为生物标志物联用提供理论依据。方法:本研究整合多组学分析框架与机器学习算法,锁定 TME 核心调控基因。基于LASSO-Cox 回归模型优化筛选预后基因,构建黑色素瘤微环境预后评分(MMPS)。通过多层次验证手段,结合诺莫图重复验证模型的可靠性。结果:本研究基于 TCGA-SKCM 队列共纳入 435 名黑色素瘤患者,在分析其肿瘤免疫微环境浸润景观的基础上,通过差异表达分析筛选鉴定出 199 个肿瘤微环境关键基因,并基于 LASSO-Cox 回归模型构建由 5 个核心基因组成的黑色素瘤微环境预后评分(MMPS)。该模型在 5 年总生存期预测中表现出显著优势,较传统 TNM 分期提升 28% 的预测效能。结论:本研究基于黑色素瘤肿瘤微环境建立了 MMPS 模型,该模型可有效预测黑色素瘤患者的预后效果。
Objective: This study aims to develop a Melanoma Microenvironment Prognostic Score (MMPS) using bioinformatics techniques, integrating gene expression profiles and clinical characteristics to enable dynamic prognostic stratification and provide a theoretical foundation for combined biomarker applications.Methods: We employed a multi-omics analytical framework combined with machine learning algorithms to identify core regulatory genes within the tumor microenvironment (TME). Prognostic genes were optimized and selected via LASSO-Cox regression modeling to construct the MMPS. The model\'s robustness was rigorously validated through multi-level verification, including nomogram calibration.Results: A cohort of 435 melanoma patients from the TCGA-SKCM database was analyzed. By characterizing immune microenvironment infiltration landscapes and performing differentially expressed gene analysis, 199 TME-critical genes were identified. A refined MMPS model comprising five core genes was established using LASSO-Cox regression. The MMPS demonstrated superior predictive performance for 5-year overall survival, outperforming traditional TNM staging by 28% in predictive efficacy.Conclusion: The MMPS model, rooted in melanoma microenvironment dynamics, serves as a robust tool for prognostic prediction in melanoma patients, offering enhanced clinical utility over conventional staging systems.
汪译函、何岚
湖南大学生命医学交叉研究院,长沙 410082湖南大学生命医学交叉研究院,长沙 410082
肿瘤学生物科学研究方法、生物科学研究技术计算技术、计算机技术
免疫学黑色素瘤机器学习预测模型肿瘤微环境
ImmunologyMelanomaMachine learningPrediction modelTumor microenvironment
汪译函,何岚.基于机器学习算法构建黑色素瘤免疫治疗预后预测模型[EB/OL].(2025-05-30)[2025-06-04].http://www.paper.edu.cn/releasepaper/content/202505-177.点此复制
评论