On the irrationality of certain $p$-adic zeta values
On the irrationality of certain $p$-adic zeta values
A famous theorem of Zudilin states that at least one of the Riemann zeta values $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational. In this paper, we establish the $p$-adic analogue of Zudilin's theorem. As a weaker form of our result, it is proved that for any prime number $p \geqslant 5$ there exists an odd integer $i$ in the interval $[3,p+p/\log p+5]$ such that the $p$-adic zeta value $\zeta_p(i)$ is irrational.
Li Lai、Cezar Lupu、Johannes Sprang
数学
Li Lai,Cezar Lupu,Johannes Sprang.On the irrationality of certain $p$-adic zeta values[EB/OL].(2025-05-29)[2025-06-15].https://arxiv.org/abs/2505.23088.点此复制
评论