|国家预印本平台
首页|Evaluation Hallucination in Multi-Round Incomplete Information Lateral-Driven Reasoning Tasks

Evaluation Hallucination in Multi-Round Incomplete Information Lateral-Driven Reasoning Tasks

Evaluation Hallucination in Multi-Round Incomplete Information Lateral-Driven Reasoning Tasks

来源:Arxiv_logoArxiv
英文摘要

Multi-round incomplete information tasks are crucial for evaluating the lateral thinking capabilities of large language models (LLMs). Currently, research primarily relies on multiple benchmarks and automated evaluation metrics to assess these abilities. However, our study reveals novel insights into the limitations of existing methods, as they often yield misleading results that fail to uncover key issues, such as shortcut-taking behaviors, rigid patterns, and premature task termination. These issues obscure the true reasoning capabilities of LLMs and undermine the reliability of evaluations. To address these limitations, we propose a refined set of evaluation standards, including inspection of reasoning paths, diversified assessment metrics, and comparative analyses with human performance.

Wenhan Dong、Tianyi Hu、Jingyi Zheng、Zhen Sun、Yuemeng Zhao、Yule Liu、Xinlei He、Xinyi Huang

语言学

Wenhan Dong,Tianyi Hu,Jingyi Zheng,Zhen Sun,Yuemeng Zhao,Yule Liu,Xinlei He,Xinyi Huang.Evaluation Hallucination in Multi-Round Incomplete Information Lateral-Driven Reasoning Tasks[EB/OL].(2025-05-28)[2025-07-03].https://arxiv.org/abs/2505.23843.点此复制

评论