On the local metric dimension of $K_4$-free graphs
On the local metric dimension of $K_4$-free graphs
Let $G$ be a graph of order $ n(G) $, local metric dimension $ \dim_l(G) $, and clique number $ \omega(G) $. It has been conjectured that if $ n(G) \geq \omega(G) + 1 \geq 4 $, then $ \dim_l(G) \leq \left( \frac{\omega(G) - 2}{\omega(G) - 1} \right) n(G) $. In this paper the conjecture is confirmed for the case $ \omega(G) = 3 $. Consequently, a problem regarding the local metric dimension of planar graphs is also resolved.
Ali Ghalavand、Sandi Klav?ar、Xueliang Li
数学
Ali Ghalavand,Sandi Klav?ar,Xueliang Li.On the local metric dimension of $K_4$-free graphs[EB/OL].(2025-05-31)[2025-06-28].https://arxiv.org/abs/2506.00414.点此复制
评论