|国家预印本平台
首页|Notes on a Gaussian-Based Distribution Algebra for the Non-linear Wave Equation of the Shift Vector in Quantum Foam

Notes on a Gaussian-Based Distribution Algebra for the Non-linear Wave Equation of the Shift Vector in Quantum Foam

Notes on a Gaussian-Based Distribution Algebra for the Non-linear Wave Equation of the Shift Vector in Quantum Foam

来源:Arxiv_logoArxiv
英文摘要

In these notes, a non-linear distributional renormalisation algebra is developed, tailored to the geometry of Gaussian Quantum Foam. The construction is based on sequences of smooth Gaussian functions restricted to spacelike hypersurfaces in a sequence of homotopic and globally hyperbolic spacetimes, converging in the sense of distributions to Quantum Foam. A restricted subspace of Schwartz functions is defined, consisting of finite products of scaled Gaussians supported on the hypersurfaces. An associated distribution space is introduced as the space of distributional limits of such sequences. The resulting renormalisation algebra is closed under addition, multiplication, and arbitrary-order differentiation, with all non-linear operations defined at the level of smooth representatives prior to taking the limit. This algebra is then applied to the non-linear scalar wave equation governing the shift vector field. In the distributional limit, the wave operator acting on the Gaussian sequence yields a linear combination of the Dirac measure and its second-order derivative, which together encode the singular curvature response of the collapsing Quantum Foam element. The presence of the measure's second-order derivative signals a sharply localised curvature impulse, consistent with a quantum geometric source driving the displacement of the vacuum. Meanwhile, the measure term corresponds to a uniform shift across the hypersurfaces, reflecting residual translation in the emerging classical geometry. In the classical limit, the non-linear wave equation reduces to the massless vacuum Klein-Gordon equation, thereby linking the quantum and classical regimes through a unified distributional formalism.

Claes Cramer

物理学

Claes Cramer.Notes on a Gaussian-Based Distribution Algebra for the Non-linear Wave Equation of the Shift Vector in Quantum Foam[EB/OL].(2025-05-30)[2025-07-01].https://arxiv.org/abs/2506.00106.点此复制

评论