|国家预印本平台
首页|An extended Vinogradov's mean value theorem

An extended Vinogradov's mean value theorem

An extended Vinogradov's mean value theorem

来源:Arxiv_logoArxiv
英文摘要

In this paper, we provide novel mean value estimates for exponential sums related to the extended main conjecture of Vinogradov's mean value theorem, by developing the Hardy-Littlewood circle method together with a refined shifting variables argument. Let $d\geq 2$ be a natural number and $\boldsymbolα=(α_d,\ldots, α_1)\in \mathbb{R}^d.$ Define the exponential sum \begin{equation*} f_d(\boldsymbolα;N):=\sum_{1 \leq n \leq N}e(α_d n^d + \cdots+ α_1 n). \end{equation*} For $p>0$, consider mean values of the exponential sums \begin{equation*} \mathcal{I}_{p,d}(u;N):=\int_{[0,1)\times [0,N^{-u})\times [0,1)^{d-2}}|f_d(\boldsymbolα;N)|^pd\boldsymbolα, \end{equation*} where we wrote $d\boldsymbolα=dα_1 dα_2\cdots dα_{d-1}dα_d.$ By making use of the aforementioned tools, we obtain the sharp upper bound for $\mathcal{I}_{p,d}(u;N)$, for $d=2,3$ and $0<u\leq 1$. Furthermore, for $d \geq 4$, we obtain analogous results depending on a small cap decoupling inequality for the moment curves in $\mathbb{R}^d.$

Kiseok Yeon、Changkeun Oh

数学

Kiseok Yeon,Changkeun Oh.An extended Vinogradov's mean value theorem[EB/OL].(2025-06-24)[2025-07-01].https://arxiv.org/abs/2506.01751.点此复制

评论