Free Askey--Wilson functionals and geometric last passage percolation on a strip
Free Askey--Wilson functionals and geometric last passage percolation on a strip
Barraquand, Corwin, and Yang arXiv:2306.05983 established that geometric last passage percolation (LPP) on a strip of $\mathbb{Z}^2$ has a unique stationary measure. Building on this, Barraquand arXiv:2409.08927 derived explicit contour integral formulas for the model's multipoint probability generating function. In this paper, we introduce free Askey--Wilson functionals and use them to extend these generating function formulas. Our framework yields explicit expressions valid over a broader range of boundary parameters than previously accessible. This generalization allows us to determine the full phase diagram that characterizes how the large-scale asymptotics of the stationary measure depend on the boundary conditions. In addition, we prove a Poisson approximation for the stationary measure when the parameters vary with the strip width.
Wlodek Bryc、Kamil Szpojankowski、Jacek Wesolowski
数学
Wlodek Bryc,Kamil Szpojankowski,Jacek Wesolowski.Free Askey--Wilson functionals and geometric last passage percolation on a strip[EB/OL].(2025-06-02)[2025-07-17].https://arxiv.org/abs/2506.01879.点此复制
评论