|国家预印本平台
首页|On the modular cohomology of $GL_2(\mathbb{Z}/p^n)$ and $SL_2(\mathbb{Z}/p^n)$

On the modular cohomology of $GL_2(\mathbb{Z}/p^n)$ and $SL_2(\mathbb{Z}/p^n)$

On the modular cohomology of $GL_2(\mathbb{Z}/p^n)$ and $SL_2(\mathbb{Z}/p^n)$

来源:Arxiv_logoArxiv
英文摘要

Let $p$ be an odd prime. Denote a Sylow $p$-subgroup of $GL_2(\mathbb{Z}/p^n)$ and $SL_2(\mathbb{Z}/p^n)$ by $S_p(n,GL)$ and $S_p(n,SL)$ respectively. The theory of stable elements tells us that the mod-$p$ cohomology of a finite group is given by the stable elements of the mod-$p$ cohomology of it's Sylow $p$-subgroup. We prove that for suitable group extensions of $S_p(n,GL)$ and $S_p(n,SL)$ the $E_2$-page of the Lyndon-Hochschild-Serre spectral sequence associated to these extensions does not depend on $n>1$. Finally, we use the theory of fusion systems to describe the ring of stable elements.

Anja Meyer

数学

Anja Meyer.On the modular cohomology of $GL_2(\mathbb{Z}/p^n)$ and $SL_2(\mathbb{Z}/p^n)$[EB/OL].(2025-06-05)[2025-06-14].https://arxiv.org/abs/2506.04720.点此复制

评论