On the Dynamics of Weighted Composition Operators
On the Dynamics of Weighted Composition Operators
We study the properties of power-boundedness, Li-Yorke chaos, distributional chaos, absolutely Ces\`aro boundedness and mean Li-Yorke chaos for weighted composition operators on $L^p(\mu)$ spaces and on $C_0(\Omega)$ spaces. We illustrate the general results by presenting several applications to weighted shifts on the classical sequence spaces $c_0(\mathbb{N})$, $c_0(\mathbb{Z})$, $\ell^p(\mathbb{N})$ and $\ell^p(\mathbb{Z})$ ($1 \leq p < \infty$) and to weighted translation operators on the classical function spaces $C_0[1,\infty)$, $C_0(\mathbb{R})$, $L^p[1,\infty)$ and $L^p(\mathbb{R})$ ($1 \leq p < \infty$).
Nilson C. Bernardes、Antonio Bonilla、Jo?o V. A. Pinto
数学
Nilson C. Bernardes,Antonio Bonilla,Jo?o V. A. Pinto.On the Dynamics of Weighted Composition Operators[EB/OL].(2025-06-04)[2025-06-14].https://arxiv.org/abs/2506.04476.点此复制
评论