星地融合网络中一种基于强化学习的任务卸载方法
在星地融合网络中部署边缘服务器可以为用户提供高质量的计算服务。本文研究了星地融合网络中的任务卸载问题,首先根据星地移动边缘计算(Mobile Edge Computing,MEC)场景中通算资源受限导致的用户间资源竞争以及用户服务质量与边缘网络整体性能的冲突,建立了包含用户间博弈以及用户与边缘网络间博弈的双层博弈模型,设计了多目标总效用函数对传输以及计算阶段的整体效用进行了优化;其次,针对经验回放池中样本分布不均匀的问题,提出一种基于改进优先经验回放的软演员-评论家算法(Soft Actor-Critic,SAC)算法,通过引入样本价值优化了采样机制,加速了模型训练;最后,仿真实验表明所提算法与近端策略优化(Proximal Policy Optimization,PPO)算法等相比可以有效提升系统总效用。
eploying edge servers in satellite-terrestrial integrated networks can provide users with high-quality computing services. This paper investigates the task offloading problem in satellite-terrestrial integrated networks, first, considering the resource competition among users caused by constrained communication-computing resources in satellite-terrestrial Mobile Edge Computing(MEC) networks, along with the conflict between user quality of service and overall edge network performance, we establish a two-layer game model encompassing both inter-user competition and user-edge network interaction. A multi-objective total utility function is designed to optimize the overall utility across both transmission and computation phases. Second, to address the uneven sample distribution in the experience replay pool, we propose an improved prioritized experience replay-based Soft Actor-Critic(SAC) algorithm, which optimizes the sampling mechanism by introducing sample value evaluation to accelerate model training. Finally, simulation results demonstrate that compared with the Proximal Policy Optimization(PPO) algorithm and other baseline methods, the proposed algorithm can effectively enhance the overall system utility.
蔺涧鸣
北京邮电大学网络与交换技术全国重点实验室,北京 100876
计算技术、计算机技术
计算机应用技术星地融合网络边缘计算强化学习
omputer Application TechnologySatellite-Terrestrial Integrated NetworksEdge ComputingReinforcement Learning
蔺涧鸣.星地融合网络中一种基于强化学习的任务卸载方法[EB/OL].(2025-06-05)[2025-06-21].http://www.paper.edu.cn/releasepaper/content/202506-13.点此复制
评论