Simple polynomial equations over $(2 \times 2)$-matrices
Simple polynomial equations over $(2 \times 2)$-matrices
We consider the polynomial equation $$X^n + a_{n-1}\cdot X^{n-1} + \dots + a_1 \cdot X + a_0 \cdot I = O,$$ over $(2 \times 2)$-matrices $X$ with the real entries, where $I$ is the identity matrix, $O$ is the null matrix, $a_i \in \mathbb R$ for each $i$ and $n \geq 2$. We discuss its solution set $S$ supplied with the natural Euclidean topology. We completely describe $S$. We also show that $\dim S =2.$
Vitalij A. Chatyrko、Alexandre Karassev
数学
Vitalij A. Chatyrko,Alexandre Karassev.Simple polynomial equations over $(2 \times 2)$-matrices[EB/OL].(2025-06-09)[2025-06-24].https://arxiv.org/abs/2506.07689.点此复制
评论