|国家预印本平台
首页|Path Integral Optimiser: Global Optimisation via Neural Schr\"odinger-F\"ollmer Diffusion

Path Integral Optimiser: Global Optimisation via Neural Schr\"odinger-F\"ollmer Diffusion

Path Integral Optimiser: Global Optimisation via Neural Schr\"odinger-F\"ollmer Diffusion

来源:Arxiv_logoArxiv
英文摘要

We present an early investigation into the use of neural diffusion processes for global optimisation, focusing on Zhang et al.'s Path Integral Sampler. One can use the Boltzmann distribution to formulate optimization as solving a Schr\"odinger bridge sampling problem, then apply Girsanov's theorem with a simple (single-point) prior to frame it in stochastic control terms, and compute the solution's integral terms via a neural approximation (a Fourier MLP). We provide theoretical bounds for this optimiser, results on toy optimisation tasks, and a summary of the stochastic theory motivating the model. Ultimately, we found the optimiser to display promising per-step performance at optimisation tasks between 2 and 1,247 dimensions, but struggle to explore higher-dimensional spaces when faced with a 15.9k parameter model, indicating a need for work on adaptation in such environments.

Max McGuinness、Eirik Fladmark、Francisco Vargas

物理学计算技术、计算机技术

Max McGuinness,Eirik Fladmark,Francisco Vargas.Path Integral Optimiser: Global Optimisation via Neural Schr\"odinger-F\"ollmer Diffusion[EB/OL].(2025-06-07)[2025-07-01].https://arxiv.org/abs/2506.06815.点此复制

评论