|国家预印本平台
首页|Divisibility of Griesmer Codes

Divisibility of Griesmer Codes

Divisibility of Griesmer Codes

来源:Arxiv_logoArxiv
英文摘要

In this paper, we consider Griesmer codes, namely those linear codes meeting the Griesmer bound. Let $C$ be an $[n,k,d]_q$ Griesmer code with $q=p^f$, where $p$ is a prime and $f\ge1$ is an integer. In 1998, Ward proved that for $q=p$, if $p^e|d$, then $p^e|\mathrm{wt}(c)$ for all $c\in C$. In this paper, we show that if $q^e|d$, then $C$ has a basis consisting of $k$ codewords such that the first $\min\left\{e+1,k\right\}$ of them span a Griesmer subcode with constant weight $d$ and any $k-1$ of them span a $[g_q(k-1,d),k-1,d]_q$ Griesmer subcode. Using the $p$-adic algebraic method together with this basis, we prove that if $q^e|d$, then $p^e|\mathrm{wt}(c)$ for all $c\in C$. Based on this fact, using the geometric approach with the aforementioned basis, we show that if $p^e|d$, then $\Delta |{\rm wt}(c)$ for all $c\in C$, where $\Delta=\left\lceil p^{e-(f-1)(q-2)}\right\rceil$.

Haihua Deng、Hexiang Huang、Qing Xiang

数学

Haihua Deng,Hexiang Huang,Qing Xiang.Divisibility of Griesmer Codes[EB/OL].(2025-06-09)[2025-06-22].https://arxiv.org/abs/2506.07846.点此复制

评论