Generalised Orbifolds and G-equivariantisation
Generalised Orbifolds and G-equivariantisation
In a construction motivated by topological field theory, a so-called orbifold datum $\mathbb{A}$ in a ribbon category $C$ allows one to define a new ribbon category $C_{\mathbb{A}}$. If $C$ is the neutral component of a $G$-crossed ribbon category $B$, and $\mathbb{A}$ is an orbifold datum in $C$ defined in terms of $B$, one finds that $C_{\mathbb{A}}$ is equivalent to the equivariantisation $B^G$ of $B$ as a ribbon category. We give a constructive proof of this equivalence.
Sebastian Heinrich、Julia Plavnik、Ingo Runkel、Abigail Watkins
数学物理学
Sebastian Heinrich,Julia Plavnik,Ingo Runkel,Abigail Watkins.Generalised Orbifolds and G-equivariantisation[EB/OL].(2025-06-09)[2025-08-02].https://arxiv.org/abs/2506.08154.点此复制
评论