Multiversion of the Hausdorff--Young inequality
Multiversion of the Hausdorff--Young inequality
We consider a family of jointly Gaussian random vectors $\xi_j \in \mathbb{R}^{k_j}$, each standard normal but possibly correlated, and investigate when\[ \mathbb{E}\, F\!\Bigl(B\bigl(|T_{z_1} f_1(\xi_1)|,\dots,|T_{z_n} f_n(\xi_n)|\bigr)\Bigr) \;\;\le\;\; F\!\Bigl(\,\mathbb{E}\,B\bigl(|f_1(\xi_1)|,\dots,|f_n(\xi_n)|\bigr)\Bigr) \] holds, where $T_{z}$ is either a Mehler transform $(z \in \mathbb{C})$ or a noise operator $(z \in \mathbb{R})$. This framework unifies and extends real and complex hypercontractivity to multi-function settings, yielding multiversions of the sharp Hausdorff--Young inequality, the log-Sobolev inequality, and a noisy Gaussian--Jensen inequality. Applications include a new covariance-based characterization of the Brascamp--Lieb inequality in the presence of noise.
Paata Ivanisvili、Pavlos Kalantzopoulos
数学
Paata Ivanisvili,Pavlos Kalantzopoulos.Multiversion of the Hausdorff--Young inequality[EB/OL].(2025-06-10)[2025-07-18].https://arxiv.org/abs/2506.08494.点此复制
评论