|国家预印本平台
首页|Lipschitz free $p$-spaces for $0<p<1$ in the light of the Schur $p$-property and the compact reduction

Lipschitz free $p$-spaces for $0<p<1$ in the light of the Schur $p$-property and the compact reduction

Lipschitz free $p$-spaces for $0<p<1$ in the light of the Schur $p$-property and the compact reduction

来源:Arxiv_logoArxiv
英文摘要

The geometric analysis of non-locally convex quasi-Banach spaces presents rich and nuanced challenges. In this paper, we introduce the Schur $p$-property and the strong Schur $p$-property for $0 < p \leq 1$, providing new tools to deepen the understanding of these spaces, and the Lipschitz free $p$-spaces in particular. Moreover, by developing an adapted version of the compact reduction principle, we prove that Lipschitz free $p$-spaces over discrete metric spaces possess the approximation property, thereby answering positively a question raised by Albiac et al. in arXiv:2005.06555v2.

Fernando Albiac、José L. Ansorena、Jan Bíma、Marek Cúth

数学

Fernando Albiac,José L. Ansorena,Jan Bíma,Marek Cúth.Lipschitz free $p$-spaces for $0<p<1$ in the light of the Schur $p$-property and the compact reduction[EB/OL].(2025-06-11)[2025-07-16].https://arxiv.org/abs/2506.09786.点此复制

评论