|国家预印本平台
首页|Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning

Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning

Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning

来源:Arxiv_logoArxiv
英文摘要

Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective way to learn policies from human demonstrations in domains like robotics. Goal-conditioning these policies enables a single generalist policy to capture diverse behaviors contained within an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part, this limitation can be attributed to a lack of temporal consistency in the state representation learned by BC; if temporally related states are encoded to similar latent representations, then the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency in the representation space should facilitate combinatorial generalization. Successor representations, which encode the distribution of future states visited from the current state, nicely encapsulate this property. However, previous methods for learning successor representations have relied on contrastive samples, temporal-difference (TD) learning, or both. In this work, we propose a simple yet effective representation learning objective, $\text{BYOL-}\gamma$ augmented GCBC, which is not only able to theoretically approximate the successor representation in the finite MDP case without contrastive samples or TD learning, but also, results in competitive empirical performance across a suite of challenging tasks requiring combinatorial generalization.

Daniel Lawson、Adriana Hugessen、Charlotte Cloutier、Glen Berseth、Khimya Khetarpal

计算技术、计算机技术

Daniel Lawson,Adriana Hugessen,Charlotte Cloutier,Glen Berseth,Khimya Khetarpal.Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning[EB/OL].(2025-06-11)[2025-06-21].https://arxiv.org/abs/2506.10137.点此复制

评论