|国家预印本平台
首页|Constructing and Evaluating Declarative RAG Pipelines in PyTerrier

Constructing and Evaluating Declarative RAG Pipelines in PyTerrier

Constructing and Evaluating Declarative RAG Pipelines in PyTerrier

来源:Arxiv_logoArxiv
英文摘要

Search engines often follow a pipeline architecture, where complex but effective reranking components are used to refine the results of an initial retrieval. Retrieval augmented generation (RAG) is an exciting application of the pipeline architecture, where the final component generates a coherent answer for the users from the retrieved documents. In this demo paper, we describe how such RAG pipelines can be formulated in the declarative PyTerrier architecture, and the advantages of doing so. Our PyTerrier-RAG extension for PyTerrier provides easy access to standard RAG datasets and evaluation measures, state-of-the-art LLM readers, and using PyTerrier's unique operator notation, easy-to-build pipelines. We demonstrate the succinctness of indexing and RAG pipelines on standard datasets (including Natural Questions) and how to build on the larger PyTerrier ecosystem with state-of-the-art sparse, learned-sparse, and dense retrievers, and other neural rankers.

Craig Macdonald、Jinyuan Fang、Andrew Parry、Zaiqiao Meng

10.1145/3726302.3730150

计算技术、计算机技术

Craig Macdonald,Jinyuan Fang,Andrew Parry,Zaiqiao Meng.Constructing and Evaluating Declarative RAG Pipelines in PyTerrier[EB/OL].(2025-06-12)[2025-07-21].https://arxiv.org/abs/2506.10802.点此复制

评论