融合Transformer的图卷积LSTM道路网络分形维数动态预测模型
分形几何为描述道路网络中固有的不规则和自相似结构提供了强大的框架。尽管分形维数能有效量化几何复杂性,但现有模型未能充分捕捉其随时间的动态演变,从而限制了主动城市规划能力。本研究提出融合Transformer的图卷积长短期记忆网络(GCLSTM-Transformer),这一新型时空模型通过注意力机制的图卷积捕捉空间层次结构,并借助Transformer模块建模长期依赖关系。利用200个印度县(2020–2024年)的道路网络数据,我们构建了基于中心性特征的双图,并采用模糊C均值聚类算法来精化分形维数计算。实验结果表明,GCLSTM-Transformer 实现了最先进性能,R²=0.9249(几何)和 R²=0.9421(结构),优于基线模型。该模型的可解释性,得益于注意力机制,能够识别关键网络节点,有助于交通管理和基础设施设计。这项工作推动了时空图模型的研究,并提供了一个可扩展的框架,可适应其他基于网络的分形分析。
Fractal geometry offers a robust framework for characterizing the irregular and self-similar structures inherent in road networks. While fractal dimensions effectively quantify geometric complexity, existing models inadequately capture their dynamic evolution over time, limiting proactive urban planning capabilities. This study proposes the Graph Convolutional LSTM with Transformer (GCLSTM-Transformer), a novel spatio-temporal model that integrates attention-based graph convolutions to capture spatial hierarchies and Transformer modules to model long-term dependencies. Using road network data from 200 Indian counties (2020–2024), we construct dual graphs with centrality-based node features and employ Fuzzy C-means clustering to refine fractal dimension calculations. Experiments demonstrate that GCLSTM-Transformer achieves state-of-the-art performance, with R²=0.9249 (geometric) and R²=0.9421 (structural), outperforming baselines. The interpretability of the model, enabled by attention mechanisms, identifies critical network nodes, aiding traffic management and infrastructure design. This work advances spatiotemporal graph modelling and provides a scalable framework adaptable to other network-based fractal analyses.
袁思远、高飞
武汉理工大学数学与统计学院,武汉 430070武汉理工大学数学与统计学院,武汉 430070
公路运输工程计算技术、计算机技术
人工智能分形几何分形维数预测时空建模图神经网络城市规划
rtificial Intelligence Fractal geometry Fractal dimension prediction Spatiotemporal modeling Graph neural networks Urban planning
袁思远,高飞.融合Transformer的图卷积LSTM道路网络分形维数动态预测模型[EB/OL].(2025-06-17)[2025-06-19].http://www.paper.edu.cn/releasepaper/content/202506-77.点此复制
评论