|国家预印本平台
首页|Scene-aware SAR ship detection guided by unsupervised sea-land segmentation

Scene-aware SAR ship detection guided by unsupervised sea-land segmentation

Scene-aware SAR ship detection guided by unsupervised sea-land segmentation

来源:Arxiv_logoArxiv
英文摘要

DL based Synthetic Aperture Radar (SAR) ship detection has tremendous advantages in numerous areas. However, it still faces some problems, such as the lack of prior knowledge, which seriously affects detection accuracy. In order to solve this problem, we propose a scene-aware SAR ship detection method based on unsupervised sea-land segmentation. This method follows a classical two-stage framework and is enhanced by two models: the unsupervised land and sea segmentation module (ULSM) and the land attention suppression module (LASM). ULSM and LASM can adaptively guide the network to reduce attention on land according to the type of scenes (inshore scene and offshore scene) and add prior knowledge (sea land segmentation information) to the network, thereby reducing the network's attention to land directly and enhancing offshore detection performance relatively. This increases the accuracy of ship detection and enhances the interpretability of the model. Specifically, in consideration of the lack of land sea segmentation labels in existing deep learning-based SAR ship detection datasets, ULSM uses an unsupervised approach to classify the input data scene into inshore and offshore types and performs sea-land segmentation for inshore scenes. LASM uses the sea-land segmentation information as prior knowledge to reduce the network's attention to land. We conducted our experiments using the publicly available SSDD dataset, which demonstrated the effectiveness of our network.

Han Ke、Xiao Ke、Ye Yan、Rui Liu、Jinpeng Yang、Tianwen Zhang、Xu Zhan、Xiaowo Xu

雷达

Han Ke,Xiao Ke,Ye Yan,Rui Liu,Jinpeng Yang,Tianwen Zhang,Xu Zhan,Xiaowo Xu.Scene-aware SAR ship detection guided by unsupervised sea-land segmentation[EB/OL].(2025-06-15)[2025-06-30].https://arxiv.org/abs/2506.12775.点此复制

评论