|国家预印本平台
首页|基于扩散模型的对抗样本生成算法研究

基于扩散模型的对抗样本生成算法研究

中文摘要英文摘要

针对黑盒对抗攻击中迁移性不足与视觉隐蔽性差的问题,提出融合双代理模型差异最大化和Grad-CAM语义引导的扩散模型生成算法。首先,通过微调异构双代理模型最大化二者的决策边界差异,模拟未知黑盒模型的多样性;其次,在扩散模型逆向过程中引入梯度加权类激活映射(Grad-CAM)生成空间掩码,约束扰动分布于小范围内的视觉非敏感区域。实验结果表明,相较于基线方法,本算法能够在有效提升对抗样本迁移成功率的同时具备良好的视觉效果。

In this paper, a new self-attention-based unpaired image translation method is proposed to solve the generation structure optimization problem existing in current unpaired image translation methods. This method combines multi-head self-attention module and convolutional neural network to enhance the expression ability of the algorithm for global image features. Channel excitation module is used to enhance the ability of multi-head self-attention extracting global channel information. In addition, a new contrast loss constraint is proposed in this paper to ensure the content consistency between the generated image and the original in global and local aspects. Finally, the proposed method is tested on several public data sets, and the experimental results show that the proposed method can effectively improve the image translation results and enhance the authenticity after translation compared with the benchmark method.

何晓龙、罗娟娟

北京邮电大学计算机学院(国家示范性软件学院),北京 100876北京邮电大学计算机学院(国家示范性软件学院),北京 100876

计算技术、计算机技术

模式识别对抗攻击扩散模型决策边界差异黑盒迁移。

Pattern RecognitionAdversarial AttackDiffusion ModelDecision Boundary DifferenceBlack-Box Transferability.

何晓龙,罗娟娟.基于扩散模型的对抗样本生成算法研究[EB/OL].(2025-06-17)[2025-06-23].http://www.paper.edu.cn/releasepaper/content/202506-67.点此复制

评论