基于双边频域空间域特征增强的水面目标检测算法
基于改进YOLOV11提出水面目标探测算法,主要针对水面目标探测存在的海浪干扰、目标重叠遮挡、远距离小目标探测困难等问题。具体地,针对海面船舶、飞鸟、浮标以及海浪边界模糊的问题,使用傅里叶频域变换技术来增强对目标边缘、纹理和结构特征的捕捉,从而提高了在复杂背景下的目标识别能力。同时引入SwinTransformer架构,捕捉影像目标的长距离依赖,强化整体信息的提取。设计了浅层探测器,为了进一步提高探测微小目标的性能,专门对小目标进行了优化识别。实验结果显示,该方法有效提升了水面目标检测的鲁棒性和准确性,在提高大规模海域监控性能和船舶监控系统方面具有很强的实用意义。
iming at the challenges in water surface object detection, including wave interference, target occlusion, and the difficulty of detecting distant small objects, we propose an improved YOLOv11-based detection algorithm. Specifically, to address issues such as blurred boundaries of ships, birds, buoys, and waves, we employ Fourier transform in the frequency domain to enhance the capture of edge, texture, and structural features, improving recognition in complex backgrounds. Additionally, the SwinTransformer architecture is integrated to capture long-range dependencies and strengthen global feature extraction. A shallow detector is designed to optimize the detection of small objects and improve overall performance. Experimental results demonstrate that this approach significantly enhances the robustness and accuracy of water surface object detection, providing strong practical value for large-scale maritime surveillance and vessel monitoring.
仝瑶、黄曙路、赵晓明、孙保胜、贺晋、阮锦佳
交通运输部水运科学研究所,北京 100088中华人民公共和国广东海事局,广州 510000中华人民共和国烟台海事局,烟台 264000北京京航计算通讯研究所,北京 100074交通运输部水运科学研究所,北京 100088交通运输部水运科学研究所,北京 100088
水路运输工程自动化技术、自动化技术设备
海洋监测YOLO11算法傅里叶变换频域增强
Maritime MonitoringYOLOv11Fourier TransformFrequency domain enhancement.
仝瑶,黄曙路,赵晓明,孙保胜,贺晋,阮锦佳.基于双边频域空间域特征增强的水面目标检测算法[EB/OL].(2025-06-17)[2025-06-27].http://www.paper.edu.cn/releasepaper/content/202506-48.点此复制
评论