|国家预印本平台
首页|A Unifying Integral Representation of the Gamma Function and Its Reciprocal

A Unifying Integral Representation of the Gamma Function and Its Reciprocal

A Unifying Integral Representation of the Gamma Function and Its Reciprocal

来源:Arxiv_logoArxiv
英文摘要

We derive an integral expression $G(z)$ for the reciprocal gamma function, $1/\Gamma(z)=G(z)/\pi$, that is valid for all $z\in\mathbb{C}$, without the need for analytic continuation. The same integral avoids the singularities of the gamma function and satisfies $G(1-z)=\Gamma(z)\sin(\pi z)$ for all $z\in\mathbb{C}$.

Peter Reinhard Hansen、Chen Tong

数学

Peter Reinhard Hansen,Chen Tong.A Unifying Integral Representation of the Gamma Function and Its Reciprocal[EB/OL].(2025-06-13)[2025-07-16].https://arxiv.org/abs/2506.12112.点此复制

评论