Abelianization of $\text{SL}_2$ over Dedekind domains of arithmetic type
Abelianization of $\text{SL}_2$ over Dedekind domains of arithmetic type
We determine the exact group structure of the abelianization of $\text{SL}_2(A)$, where $A$ is a Dedekind domain of arithmetic type with infinitely many units. In particular, our results show that $\text{SL}_2(A)^\text{ab}$ is finite, with exponent dividing $12$ when $\text{char}(A)=0$, and dividing $6$ when $\text{char}(A)>0$. As illustrative cases, we compute $\text{SL}_2(A)^\text{ab}$ explicitly for instances where $A$ is the ring of integers of a real quadratic field or a cyclotomic extension.
Behrooz Mirzaii、Bruno R. Ramos、Thiago Verissimo
数学
Behrooz Mirzaii,Bruno R. Ramos,Thiago Verissimo.Abelianization of $\text{SL}_2$ over Dedekind domains of arithmetic type[EB/OL].(2025-07-20)[2025-08-02].https://arxiv.org/abs/2506.12638.点此复制
评论