eLog analysis for accelerators: status and future outlook
eLog analysis for accelerators: status and future outlook
This work demonstrates electronic logbook (eLog) systems leveraging modern AI-driven information retrieval capabilities at the accelerator facilities of Fermilab, Jefferson Lab, Lawrence Berkeley National Laboratory (LBNL), SLAC National Accelerator Laboratory. We evaluate contemporary tools and methodologies for information retrieval with Retrieval Augmented Generation (RAGs), focusing on operational insights and integration with existing accelerator control systems. The study addresses challenges and proposes solutions for state-of-the-art eLog analysis through practical implementations, demonstrating applications and limitations. We present a framework for enhancing accelerator facility operations through improved information accessibility and knowledge management, which could potentially lead to more efficient operations.
Antonin Sulc、Thorsten Hellert、Aaron Reed、Adam Carpenter、Alex Bien、Chris Tennant、Claudio Bisegni、Daniel Lersch、Daniel Ratner、David Lawrence、Diana McSpadden、Hayden Hoschouer、Jason St. John、Thomas Britton
自动化技术、自动化技术设备
Antonin Sulc,Thorsten Hellert,Aaron Reed,Adam Carpenter,Alex Bien,Chris Tennant,Claudio Bisegni,Daniel Lersch,Daniel Ratner,David Lawrence,Diana McSpadden,Hayden Hoschouer,Jason St. John,Thomas Britton.eLog analysis for accelerators: status and future outlook[EB/OL].(2025-06-15)[2025-06-30].https://arxiv.org/abs/2506.12949.点此复制
评论