|国家预印本平台
首页|The Casimir eigenvalues on $ad^{\otimes k}$ of SU(N) are linear on N

The Casimir eigenvalues on $ad^{\otimes k}$ of SU(N) are linear on N

The Casimir eigenvalues on $ad^{\otimes k}$ of SU(N) are linear on N

来源:Arxiv_logoArxiv
英文摘要

We consider eigenvalues of the Casimir operator on the naturally defined \textit{stable sequences} of representations of $su(N)$ algebra and prove that eigenvalues are linear over $N$ iff $\lambda_1+2\lambda_2+...+k\lambda_k=\lambda_{N-1}+2\lambda_{N-2}+...+k\lambda_{N-k}$, where $\lambda_i$ are Dynkin labels, and $\lambda_i=0$ for $k<i<N-k$, with fixed $k$. These representations are exactly those which appear in the decomposition of $ad(su(N))^{\otimes k}$, therefore this linearity admits the presentation of eigenvalues in the universal, in Vogel's sense, form, and supports the hypothesis of universal decomposition of $ad^{\otimes k}$ into Casimir eigenspaces.

R. L. Mkrtchyan

物理学数学

R. L. Mkrtchyan.The Casimir eigenvalues on $ad^{\otimes k}$ of SU(N) are linear on N[EB/OL].(2025-06-15)[2025-06-25].https://arxiv.org/abs/2506.13062.点此复制

评论