|国家预印本平台
首页|Variational inequalities associated with the semigroups generated by fractional Kolmogorov operators

Variational inequalities associated with the semigroups generated by fractional Kolmogorov operators

Variational inequalities associated with the semigroups generated by fractional Kolmogorov operators

来源:Arxiv_logoArxiv
英文摘要

In this paper we consider fractional Kolmogorov operators defined, in $\mathbb{R}^d$, by \[\Lambda_\kappa=(-\Delta)^{\alpha/2}+\frac{\kappa}{|x|^\alpha} x\cdot \nabla,\] with $\alpha\in (1,2)$, $\alpha<(d+2)/2$ and $\kappa\in \mathbb{R}$. The operator $\Lambda_\alpha$ generates a holomorphic semigroup $\{T_t^\alpha\}_{t>0}$ in $L^2(\mathbb{R}^d)$ provided that $\kappa<\kappa_c$ where $\kappa_c$ is a critical coupling constant. We establish $L^p$-boundedness properties for the variation operators $V_\rho\left(\{t^\ell\partial_t^\ell T_t^\alpha\}_{t>0}\right)$ with $\rho> 2$, $\ell\in \mathbb{N}$ and $1\vee \frac{d}{\beta}<p<\infty$, where $\beta$ depends on $\kappa$. We also study the behavior of these variation operators in the endpoint $L^{1\vee \frac{d}{\beta}}(\mathbb{R}^d)$ and we prove that $V_2(\{T_t^\alpha\}_{t>0})$ is not bounded from $L^p(\mathbb{R}^d)$ to $L^{p,\infty}(\mathbb{R}^d)$ for any $1< p<\infty$.

Jorge J. Betancor、Estefanía Dalmasso、Pablo Quijano

数学

Jorge J. Betancor,Estefanía Dalmasso,Pablo Quijano.Variational inequalities associated with the semigroups generated by fractional Kolmogorov operators[EB/OL].(2025-06-17)[2025-06-27].https://arxiv.org/abs/2506.14631.点此复制

评论