On the Composition of the Euler Function and the Dedekind Arithmetic Function
On the Composition of the Euler Function and the Dedekind Arithmetic Function
Let $I(n) = \frac{\psi(\phi(n))}{\phi(\psi(n))}$ and $K(n) = \frac{\psi(\phi(n))}{\phi(\phi(n))}$, where $\phi(n)$ is Euler's function and $\psi(n)$ is Dedekind's arithmetic function. We obtain the maximal order of $I(n)$, as well as the average orders of $I(n)$ and $K(n)$. Additionally, we prove a density theorem for both $I(n)$ and $K(n)$.
Aimin Guo、Huan Liu、Qiyu Yang
数学
Aimin Guo,Huan Liu,Qiyu Yang.On the Composition of the Euler Function and the Dedekind Arithmetic Function[EB/OL].(2025-06-17)[2025-06-27].https://arxiv.org/abs/2506.14633.点此复制
评论