|国家预印本平台
首页|On the Composition of the Euler Function and the Dedekind Arithmetic Function

On the Composition of the Euler Function and the Dedekind Arithmetic Function

On the Composition of the Euler Function and the Dedekind Arithmetic Function

来源:Arxiv_logoArxiv
英文摘要

Let $I(n) = \frac{\psi(\phi(n))}{\phi(\psi(n))}$ and $K(n) = \frac{\psi(\phi(n))}{\phi(\phi(n))}$, where $\phi(n)$ is Euler's function and $\psi(n)$ is Dedekind's arithmetic function. We obtain the maximal order of $I(n)$, as well as the average orders of $I(n)$ and $K(n)$. Additionally, we prove a density theorem for both $I(n)$ and $K(n)$.

Aimin Guo、Huan Liu、Qiyu Yang

数学

Aimin Guo,Huan Liu,Qiyu Yang.On the Composition of the Euler Function and the Dedekind Arithmetic Function[EB/OL].(2025-06-17)[2025-06-27].https://arxiv.org/abs/2506.14633.点此复制

评论