Rigidity of solutions to singular/degenerate semilinear critical equations
Rigidity of solutions to singular/degenerate semilinear critical equations
This paper deals with singular/degenerate semilinear critical equations which arise as the Euler-Lagrange equation of Caffarelli-Kohn-Nirenberg inequalities in $\mathbb{R}^d$, with $d\geq 2$. We prove several rigidity results for positive solutions, in particular we classify solutions with possibily infinite energy when the intrinsic dimension $n$ satisfies $2<n<4$.
Giovanni Catino、Dario Daniele Monticelli、Alberto Roncoroni
数学
Giovanni Catino,Dario Daniele Monticelli,Alberto Roncoroni.Rigidity of solutions to singular/degenerate semilinear critical equations[EB/OL].(2025-06-18)[2025-07-02].https://arxiv.org/abs/2506.15611.点此复制
评论