|国家预印本平台
首页|Reactive Transport Modeling with Physics-Informed Machine Learning for Critical Minerals Applications

Reactive Transport Modeling with Physics-Informed Machine Learning for Critical Minerals Applications

Reactive Transport Modeling with Physics-Informed Machine Learning for Critical Minerals Applications

来源:Arxiv_logoArxiv
英文摘要

This study presents a physics-informed neural network (PINN) framework for reactive transport modeling for simulating fast bimolecular reactions in porous media. Accurate characterization of chemical interactions and product formation in surface and subsurface environments is essential for advancing critical mineral extraction and related geoscience applications.

K. Adhikari、Md. Lal Mamud、M. K. Mudunuru、K. B. Nakshatrala

矿业工程理论与方法论矿山地质、矿山测量

K. Adhikari,Md. Lal Mamud,M. K. Mudunuru,K. B. Nakshatrala.Reactive Transport Modeling with Physics-Informed Machine Learning for Critical Minerals Applications[EB/OL].(2025-06-19)[2025-06-30].https://arxiv.org/abs/2506.15960.点此复制

评论