|国家预印本平台
首页|HausaNLP at SemEval-2025 Task 11: Hausa Text Emotion Detection

HausaNLP at SemEval-2025 Task 11: Hausa Text Emotion Detection

HausaNLP at SemEval-2025 Task 11: Hausa Text Emotion Detection

来源:Arxiv_logoArxiv
英文摘要

This paper presents our approach to multi-label emotion detection in Hausa, a low-resource African language, for SemEval Track A. We fine-tuned AfriBERTa, a transformer-based model pre-trained on African languages, to classify Hausa text into six emotions: anger, disgust, fear, joy, sadness, and surprise. Our methodology involved data preprocessing, tokenization, and model fine-tuning using the Hugging Face Trainer API. The system achieved a validation accuracy of 74.00%, with an F1-score of 73.50%, demonstrating the effectiveness of transformer-based models for emotion detection in low-resource languages.

Sani Abdullahi Sani、Salim Abubakar、Falalu Ibrahim Lawan、Abdulhamid Abubakar、Maryam Bala

非洲诸语言

Sani Abdullahi Sani,Salim Abubakar,Falalu Ibrahim Lawan,Abdulhamid Abubakar,Maryam Bala.HausaNLP at SemEval-2025 Task 11: Hausa Text Emotion Detection[EB/OL].(2025-06-23)[2025-06-30].https://arxiv.org/abs/2506.16388.点此复制

评论