|国家预印本平台
首页|A Common Pool of Privacy Problems: Legal and Technical Lessons from a Large-Scale Web-Scraped Machine Learning Dataset

A Common Pool of Privacy Problems: Legal and Technical Lessons from a Large-Scale Web-Scraped Machine Learning Dataset

A Common Pool of Privacy Problems: Legal and Technical Lessons from a Large-Scale Web-Scraped Machine Learning Dataset

来源:Arxiv_logoArxiv
英文摘要

We investigate the contents of web-scraped data for training AI systems, at sizes where human dataset curators and compilers no longer manually annotate every sample. Building off of prior privacy concerns in machine learning models, we ask: What are the legal privacy implications of web-scraped machine learning datasets? In an empirical study of a popular training dataset, we find significant presence of personally identifiable information despite sanitization efforts. Our audit provides concrete evidence to support the concern that any large-scale web-scraped dataset may contain personal data. We use these findings of a real-world dataset to inform our legal analysis with respect to existing privacy and data protection laws. We surface various privacy risks of current data curation practices that may propagate personal information to downstream models. From our findings, we argue for reorientation of current frameworks of "publicly available" information to meaningfully limit the development of AI built upon indiscriminate scraping of the internet.

Jamie Morgenstern、Rachel Hong、Jevan Hutson、William Agnew、Imaad Huda、Tadayoshi Kohno

计算技术、计算机技术法律

Jamie Morgenstern,Rachel Hong,Jevan Hutson,William Agnew,Imaad Huda,Tadayoshi Kohno.A Common Pool of Privacy Problems: Legal and Technical Lessons from a Large-Scale Web-Scraped Machine Learning Dataset[EB/OL].(2025-06-20)[2025-06-29].https://arxiv.org/abs/2506.17185.点此复制

评论