|国家预印本平台
首页|Simple smooth modules over the Lie algebras of polynomial vector fields

Simple smooth modules over the Lie algebras of polynomial vector fields

Simple smooth modules over the Lie algebras of polynomial vector fields

来源:Arxiv_logoArxiv
英文摘要

Let $\mathfrak{g}:={\rm Der}(\mathbb{C}[t_1, t_2,\cdots, t_n])$ and $\mathcal{L}:={\rm Der}(\mathbb{C}[[t_1, t_2,\cdots, t_n]])$ be the Witt Lie algebras. Clearly, $\mathfrak{g}$ is a proper subalegbra of $\mathcal{L}$. Surprisingly, we prove that simple smooth modules over $\mathfrak{g}$ are exactly the simple modules over $\mathcal{L}$ studied by Rodakov (no need to take completion). Then we find an easy and elementary way to classify all simple smooth modules over $\mathfrak{g}$. When the height $\ell_{V}\geq2$ or $n=1$, any nontrivial simple smooth $\mathfrak{g}$-module $V$ is isomorphic to an induced module from a simple smooth $\mathfrak{g}_{\geq0}$-module $V^{(\ell_{V})}$. When $\ell_{V}=1$ and $n\geq2$, any such module $V$ is the unique simple quotient of the tensor module $F(P_{0},M)$ for some simple $\gl_{n}$-module $M$, where $P_0$ is a particular simple module over the Weyl algebra $\mathcal{K}^+_n$. We further show that a simple $\mathfrak{g}$-module $V$ is a smooth module if and only if the action of each of $n$ particular vectors in $\mathfrak{g}$ is locally finite on $V$.

Zhiqiang Li、Cunguang Cheng、Shiyuan Liu、Rencai Lu、Kaiming Zhao、Yueqiang Zhao

数学

Zhiqiang Li,Cunguang Cheng,Shiyuan Liu,Rencai Lu,Kaiming Zhao,Yueqiang Zhao.Simple smooth modules over the Lie algebras of polynomial vector fields[EB/OL].(2025-06-23)[2025-07-16].https://arxiv.org/abs/2506.18262.点此复制

评论