|国家预印本平台
首页|Schwarzian Norm Estimates for Analytic Functions Associated with Convex Functions

Schwarzian Norm Estimates for Analytic Functions Associated with Convex Functions

Schwarzian Norm Estimates for Analytic Functions Associated with Convex Functions

来源:Arxiv_logoArxiv
英文摘要

Let $\mathcal{A}$ denote the class of analytic functions $f$ on the unit disc $\mathbb{D}=\{z\in\mathbb{C}:\;|z|<1\}$ normalized by $f(0)=0$ and $f^{\prime}(0)=1$. In the present article, we consider and $\mathcal{F}(c)$ the subclasses of $\mathcal{A}$ are defined by \begin{align*} \mathcal{F}(c)=\bigg\{f\in\mathcal{A}:\;{\rm Re}\;\bigg(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\bigg)>1-\frac{c}{2},\;\;\mbox{for some}\;c\in(0,3]\bigg\}, \end{align*} and derive sharp bounds for the norms of the Schwarzian and pre-Schwarzian derivatives for functions in and $\mathcal{F}(c)$ expressed in terms of their value $f^{\prime\prime}(0)$, in particular, when the quantity is equal to zero. Moreover, we obtain sharp bounds for distortion and growth theorems for functions in the class $\mathcal{F}(c)$.

Molla Basir Ahamed、Rajesh Hossain、Sabir Ahammed

数学

Molla Basir Ahamed,Rajesh Hossain,Sabir Ahammed.Schwarzian Norm Estimates for Analytic Functions Associated with Convex Functions[EB/OL].(2025-06-23)[2025-07-21].https://arxiv.org/abs/2506.19873.点此复制

评论