On Nathanson's Triangular Number Phenomenon
On Nathanson's Triangular Number Phenomenon
For a finite set $A\subseteq \mathbb{Z}$, the $h$-fold sumset is $hA := \{x_1+\dots+x_h:x_i\in A\}$. We interpret the beginning of the sequence of sumset sizes $(|hA|)_{h=1}^\infty$ in terms of the successive $L^1$-minima of a lattice. Consequently, we explain (but not provably) the appearance of triangular numbers in a recent experiment of Nathanson.
Kevin O'Bryant
数学
Kevin O'Bryant.On Nathanson's Triangular Number Phenomenon[EB/OL].(2025-06-25)[2025-07-16].https://arxiv.org/abs/2506.20836.点此复制
评论