On the conjugacy class exponent of the finite simple groups
On the conjugacy class exponent of the finite simple groups
The generalized order $e_G(g)$ of an element $g$ of a group $G$ is the smallest positive integer $k$ such that there exist $x_1,\ldots,x_k \in G$ such that $g^{x_1} \ldots g^{x_k}=1$, where $g^x=x^{-1}gx$. Let $e(G) = \max \{e_G(g)\ |\ g \in G\}$. We provide upper bounds for $e(G)$ for every finite simple group $G$. In particular, we show that $e(G)\leq 8$ unless $G\in\{\mbox{PSL}_n(q), \mbox{PSU}_n(q), E_6(q),{^2}E_6(q)\}$. For the latter groups $e(G)\leq n,3n+3,36,36$, respectively. In addition, we bound from above the generalized order of semisimple and unipotent elements of finite simple groups of Lie type.
Martino Garonzi、Christe Montijo、Alexandre Zalesski
数学
Martino Garonzi,Christe Montijo,Alexandre Zalesski.On the conjugacy class exponent of the finite simple groups[EB/OL].(2025-06-27)[2025-07-09].https://arxiv.org/abs/2506.22268.点此复制
评论