|国家预印本平台
首页|On the conjugacy class exponent of the finite simple groups

On the conjugacy class exponent of the finite simple groups

On the conjugacy class exponent of the finite simple groups

来源:Arxiv_logoArxiv
英文摘要

The generalized order $e_G(g)$ of an element $g$ of a group $G$ is the smallest positive integer $k$ such that there exist $x_1,\ldots,x_k \in G$ such that $g^{x_1} \ldots g^{x_k}=1$, where $g^x=x^{-1}gx$. Let $e(G) = \max \{e_G(g)\ |\ g \in G\}$. We provide upper bounds for $e(G)$ for every finite simple group $G$. In particular, we show that $e(G)\leq 8$ unless $G\in\{\mbox{PSL}_n(q), \mbox{PSU}_n(q), E_6(q),{^2}E_6(q)\}$. For the latter groups $e(G)\leq n,3n+3,36,36$, respectively. In addition, we bound from above the generalized order of semisimple and unipotent elements of finite simple groups of Lie type.

Martino Garonzi、Christe Montijo、Alexandre Zalesski

数学

Martino Garonzi,Christe Montijo,Alexandre Zalesski.On the conjugacy class exponent of the finite simple groups[EB/OL].(2025-06-27)[2025-07-09].https://arxiv.org/abs/2506.22268.点此复制

评论