|国家预印本平台
首页|Learning robust parameter inference and density reconstruction in flyer plate impact experiments

Learning robust parameter inference and density reconstruction in flyer plate impact experiments

Learning robust parameter inference and density reconstruction in flyer plate impact experiments

来源:Arxiv_logoArxiv
英文摘要

Estimating physical parameters or material properties from experimental observations is a common objective in many areas of physics and material science. In many experiments, especially in shock physics, radiography is the primary means of observing the system of interest. However, radiography does not provide direct access to key state variables, such as density, which prevents the application of traditional parameter estimation approaches. Here we focus on flyer plate impact experiments on porous materials, and resolving the underlying parameterized equation of state (EoS) and crush porosity model parameters given radiographic observation(s). We use machine learning as a tool to demonstrate with high confidence that using only high impact velocity data does not provide sufficient information to accurately infer both EoS and crush model parameters, even with fully resolved density fields or a dynamic sequence of images. We thus propose an observable data set consisting of low and high impact velocity experiments/simulations that capture different regimes of compaction and shock propagation, and proceed to introduce a generative machine learning approach which produces a posterior distribution of physical parameters directly from radiographs. We demonstrate the effectiveness of the approach in estimating parameters from simulated flyer plate impact experiments, and show that the obtained estimates of EoS and crush model parameters can then be used in hydrodynamic simulations to obtain accurate and physically admissible density reconstructions. Finally, we examine the robustness of the approach to model mismatches, and find that the learned approach can provide useful parameter estimates in the presence of out-of-distribution radiographic noise and previously unseen physics, thereby promoting a potential breakthrough in estimating material properties from experimental radiographic images.

Evan Bell、Daniel A. Serino、Ben S. Southworth、Trevor Wilcox、Marc L. Klasky

射流技术计算技术、计算机技术

Evan Bell,Daniel A. Serino,Ben S. Southworth,Trevor Wilcox,Marc L. Klasky.Learning robust parameter inference and density reconstruction in flyer plate impact experiments[EB/OL].(2025-06-30)[2025-07-16].https://arxiv.org/abs/2506.23914.点此复制

评论