A class of representations of the $\mathbb{Z}_2\times\mathbb{Z}_2$-graded special linear Lie superalgebra $\mathfrak{sl}(m_1+1,m_2|n_1,n_2)$ and quantum statistics
A class of representations of the $\mathbb{Z}_2\times\mathbb{Z}_2$-graded special linear Lie superalgebra $\mathfrak{sl}(m_1+1,m_2|n_1,n_2)$ and quantum statistics
The description of the $\mathbb{Z}_2\times\mathbb{Z}_2$-graded special linear Lie superalgebra $\mathfrak{sl} (m_1+1,m_2|n_1,n_2)$ is carried out via generators $a_1^\pm,\ldots, a_{m_1+m_2+n_1+n_2}^\pm$ that satisfy triple relations and are called creation and annihilation operators. With respect to these generators, a class of Fock type representations of $\mathfrak{sl} (m_1+1,m_2|n_1,n_2)$ is constructed. The properties of the underlying statistics are discussed and its Pauli principle is formulated.
N. I. Stoilova、J. Van der Jeugt
数学物理学
N. I. Stoilova,J. Van der Jeugt.A class of representations of the $\mathbb{Z}_2\times\mathbb{Z}_2$-graded special linear Lie superalgebra $\mathfrak{sl}(m_1+1,m_2|n_1,n_2)$ and quantum statistics[EB/OL].(2025-06-30)[2025-07-25].https://arxiv.org/abs/2506.23953.点此复制
评论